A Multicenter Evaluation of the Diagnostic Performance of the Central Vein Sign Using Simplified Algorithms

1Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 2Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 3QMENTA, Inc., Boston, MA, 4Functional MRI Facility, NIMH, National Institutes of Health, Bethesda, MD, 5Department of Neurology, University of Southern California, Los Angeles, CA, 6Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 7Department of Neurology, University of California at San Francisco, San Francisco, CA, 8Department of Neurology, Johns Hopkins University, Baltimore, MD, 9Department of Neurology, Dell Medical School, The University of Texas, Austin, TX, 10Department of Neurology, Yale University, New Haven, CT, 11Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON, CANADA, 12Department of Neurology, University of Texas Health Science Center, Houston, TX, 13Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, 14Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, 15Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH.
Disclosures

David Moreno-Dominguez: Employed by and holds options of QMENTA
Paulo Rodrigues: Employed by and holds options of QMENTA
Christina Azevedo: consulting fees for scientific advisory boards for Genentech, EMD Serono, Alexion Pharmaceuticals, and Sanofi Genzyme
Peter Calabresi: PI on grants to JHU from Biogen and Annexon. Serves on scientific advisory boards for Disarm Therapeutics and Biogen
Bruce AC Cree: Compensation for consulting from: Alexion, Atara, Biogen, EMD Serono, Novartis, Sanofi and TG Therapeutics
Elias Sotirchos: Consulting for scientific advisory boards from Viela Bio and Genentech, Speaker honoraria from Viela Bio
Leorah Freeman: Advisory board participation (Genentech, Novartis, Celgene); Consulting (EMD Serono, Celgene, Biogen); program sponsorship (Biogen, EMD Serono)
Rohini D Samudralwar: Advisory board participation (Biogen, EMD Serono, Sanofi Genzyme); Consulting (EMD Serono, Biogen)
Roland G Henry: Consulting for Novartis, Sanofi/Genzyme, Roche/Genentech, Celgene, Atara, and Medday.
Erin E Longbrake: Consulting for Genentech, Genzyme, Alexion, Biogen, EMD/Serono, Celgene/Bristol Myers Squibb
Jiwon Oh: Research support from Biogen-Idec, Roche, and EMD-Serono; consulting compensation from EMD-Serono, Sanofi-Genzyme, Biogen-Idec, Roche, Celgene, and Novartis
Daniel Pelletier: Consulting compensation from EMD-Serono, Sanofi Genzyme, Roche, and Novartis
Nancy L Sicotte: Research support from the National Institutes of Health, National Multiple Sclerosis Society, Patient Centered Outcomes Research institute, Race to Erase MS Foundation and Biogen-Idec
Andrew J Solomon: Consulting: EMD Serono, Biogen, Alexion, Celgene; Non-promotional speaking: EMD Serono; Research Funding: Biogen; Contracted Research: Biogen, Novartis, Actelion, Genentech/Roche
Daniel S Reich: Supported by the Intramural Research Program of NINDS; additional research support from Vertex Pharmaceuticals.
Daniel Ontaneda: Research support from the National Institutes of Health, National Multiple Sclerosis Society, Patient Centered Outcomes Research Institute, Race to Erase MS Foundation, Genentech, Genzyme, and Novartis. Consulting fees from Biogen Idec, Genentech/Roche, Genzyme, Novartis, and Merck.
Introduction

• Limited specificity of current diagnostic criteria (McDonald 2017)¹

• High rates of misdiagnosis (~1 in 5 MS patients are misdiagnosed)²

• Potential solution: a radiologic biomarker for MS – the Central Vein Sign³

• **Central Vein Sign (CVS)**
 - Visualized on susceptibility-based MR imaging sequences, including FLAIR*

 \[
 \text{FLAIR}^* = \text{FLAIR} \times \text{T2}^*-\text{weighted}
 \]
 - Appears as a thin hypointense line or small hypointense dot
 - Must visualize in at least two perpendicular MRI planes

Introduction

How do we measure the CVS?

• Threshold proportions of all lesions:
 \[
 \frac{CVS \text{ positive lesions}}{CVS \text{ positive lesions} + CVS \text{ negative lesions}}
 \]
 • Thresholds anywhere from 35-50% have been suggested\(^1,2\)
 • Time-intensive process, not as readily applicable to clinical settings

• Simplified algorithms:
 • Select-3*: counting at least 3 CVS+ lesions over an entire FLAIR* scan (previously found to have a sensitivity of 0.83, specificity of 0.81)\(^3\)
 • Though much easier to apply clinically, the ideal threshold (# of lesions to count) has not been investigated in a large cohort

Objective: evaluate the sensitivity and specificity of simplified algorithms for assessing the CVS using FLAIR* for MS diagnosis

Methods: Study Design

• Prospective multi-center observational pilot study
• 97 subjects with a clinical/radiological suspicion of MS were recruited across 10 different North American MS referral sites in 2018-2019
 • Cleveland Clinic, University of Toronto, University of Pennsylvania, University of Vermont, Johns Hopkins University, University of California San Francisco, University of Texas—Houston, Cedars Sinai Medical Center, University of Southern California, and Yale University
• Each subject had a single clinical visit which included brain MRI with gadolinium (macrocyclic chelates)
• Clinicians at each site determined if the subject met McDonald 2017 criteria after workup
• Clinicians followed up with participants as needed, and reported the diagnosis at follow-up approximately 12 months later
Methods: Image Acquisition and Analysis

• MRI Protocol was pre-specified at 3T with the following sequences obtained:
 - 3D T1-weighted (pre- & post-contrast)
 - 3D FLAIR
 - 3D T2*-weighted (pre- & post-contrast)
 - FLAIR* (pre- & post-contrast)

• 92 post-Gd scans were analyzed for the CVS by trained raters at each institution
 • Images were uploaded to a cloud server (QMENTA)
 • Trained raters selected up to 6 lesions meeting NAIMS criteria on pre- and post-contrast FLAIR* images
 • The diagnostic performance of the CVS was evaluated at thresholds of 1 CVS+ lesion (Select-1*) up to 6 (Select-6*)

Results

97 subjects were consented and enrolled. 5 subjects were excluded from analysis due to excessive image artifacts (4) or missing post-Gd scans (1). In total, 92 subjects were included in the analysis.

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>Non-MS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%)</td>
<td>38 (41)</td>
<td>54 (59)</td>
</tr>
<tr>
<td>Age, mean ± SD</td>
<td>41 ± 12</td>
<td>47 ± 11</td>
</tr>
<tr>
<td>Female, no. (%)</td>
<td>22 (58)</td>
<td>45 (83)</td>
</tr>
<tr>
<td>Race, white, no. (%)</td>
<td>32 (84)</td>
<td>44 (81)</td>
</tr>
<tr>
<td>Hypertension, no. (%)</td>
<td>2 (5)</td>
<td>13 (24)</td>
</tr>
<tr>
<td>Diabetes, no. (%)</td>
<td>1 (3)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Coronary Artery Disease, no. (%)</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Hyperlipidemia, no. (%)</td>
<td>2 (5)</td>
<td>10 (19)</td>
</tr>
<tr>
<td>Past tobacco use, no. (%)</td>
<td>9 (24)</td>
<td>13 (24)</td>
</tr>
<tr>
<td>Current tobacco use, no. (%)</td>
<td>2 (5)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Symptom duration (weeks), median [IQR]</td>
<td>53 [266] N=38</td>
<td>109 [271] N=43</td>
</tr>
<tr>
<td>EDSS, mean ± SD</td>
<td>1.3 ± 1.0</td>
<td>N/A</td>
</tr>
<tr>
<td>T25FW, mean ± SD</td>
<td>4.7 ± 1.0</td>
<td>5.5 ± 1.4</td>
</tr>
<tr>
<td>9-HPT (seconds), mean ± SD</td>
<td>22.0 ± 3.8</td>
<td>21.3 ± 4.1</td>
</tr>
<tr>
<td>SDMT (number correct), mean ± SD</td>
<td>52.0 ± 10.8</td>
<td>52.3 ± 12.1</td>
</tr>
<tr>
<td>CSF-specific OCB positive / number tested</td>
<td>18 / 23</td>
<td>7 / 27</td>
</tr>
</tbody>
</table>

*Did not meet McDonald 2017 Criteria for MS at initial evaluation

Of the MS subjects:
- 2 PPMS subjects
- 36 RRMS subjects

T25FW= Timed 25-foot walk test. EDSS= Expanded Disability Status Scale. 9-HPT= 9-Hole Peg Test. SDMT= Symbol Digit Modalities Test. CSF= Cerebrospinal fluid. OCB= oligoclonal bands
Results

ROC Curve for Diagnosing MS based on Select-n* (post-Gd)

AUROC: 0.79 (95% CI: 0.68-0.89)

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>NPV</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select-1*</td>
<td>89%</td>
<td>28%</td>
<td>79%</td>
<td>47%</td>
</tr>
<tr>
<td>Select-2*</td>
<td>84%</td>
<td>43%</td>
<td>79%</td>
<td>51%</td>
</tr>
<tr>
<td>Select-3*</td>
<td>79%</td>
<td>63%</td>
<td>81%</td>
<td>60%</td>
</tr>
<tr>
<td>Select-4*</td>
<td>71%</td>
<td>72%</td>
<td>78%</td>
<td>64%</td>
</tr>
<tr>
<td>Select-5*</td>
<td>66%</td>
<td>80%</td>
<td>77%</td>
<td>70%</td>
</tr>
<tr>
<td>Select-6*</td>
<td>63%</td>
<td>93%</td>
<td>78%</td>
<td>86%</td>
</tr>
</tbody>
</table>

NPV= Negative Predictive Value, PPV= Positive Predictive Value
Results: 12-month Follow-up

- Categorization of participants as MS vs non-MS was unchanged in 83 participants (90%) but changed in 9 participants (10%):
 - 7 met McDonald 2017 Criteria at 12 months
 - 2 subjects who initially met McDonald 2017 Criteria were given alternative diagnoses at follow-up
- **Would the CVS have been able to predict this change?**
 - 4/7 of interval MS cases were CVS+ by Select-3*
 - 2/2 MS cases that were later undiagnosed were CVS- by Select-3*
- AUROC unchanged at follow up at 0.79
Conclusions

Simplified CVS algorithms rated by clinical neurologists can accurately discriminate MS and non-MS cases

• Select-3*: Identified 4/7 interval MS cases -- may aid in identifying possible MS cases that would benefit from close follow-up
• Select-6*: High specificity of 93%, could be useful in differentiating MS from mimickers
• AUROC of 0.79

• Future Directions:
 • Larger longitudinal prospective study to:
 • Determine if the CVS will allow for an earlier accurate diagnosis of MS
 • Explore how best to integrate CVS findings into the diagnostic criteria
 • Exploration of automated methods of CVS assessment
 • Determine if the CVS can be helpful in follow-up of established MS patients